鋰電池陽極的硅退化原因
可充電的鋰離子電池為智能手機、平板電腦、筆記本電腦以及越來越多的電動汽車提供動力,是非常重要的產(chǎn)品,但是鋰電池陽極中的硅快速退化和失效的問題嚴重制約了行業(yè)的發(fā)展。為了解決這個問題,科學(xué)家和工程師正在開發(fā)新的電極材料,可以在相同的空間內(nèi)儲存更多的鋰。
其中一個有希望的解決方案是電池的負極(也稱陽極)使用鋁合金材料。例如,一磅的硅產(chǎn)生的“合金型”陽極,可以存儲大約 10 磅石墨相同的鋰,后者是目前在商業(yè)鋰離子電池中使用的“插層型”(intercalation-type)陽極。這意味著用前者取代后者有可能使陽極輕 10 倍,并大大縮小。
盡管有這樣的優(yōu)秀的表現(xiàn),但是合金型陽極還沒有得到廣泛的采用。因為當(dāng)鋰離子被插入陽極內(nèi)的合金型硅顆粒時,這些顆粒開始膨脹并破裂,導(dǎo)致電池在僅僅幾個充電周期后就失效??s小這些顆粒的尺寸,使其特征處于納米級–例如在納米多孔硅中–可以緩解這種退化,但實際的作用機制還沒有被完全理解。
發(fā)表于《ACS能源通訊》的一項研究中,賓夕法尼亞州工程公司的研究人員揭示了當(dāng)合金型陽極充電和放電時在納米尺度上發(fā)生的復(fù)雜電化學(xué)過程。對目前阻礙這類有前途的儲能材料的降解行為的更好理解,可以為新的、更有效的電池設(shè)計打開大門。
在本研究之前,常規(guī)合金型陽極退化是如何發(fā)生的,其基本模型顯示在本圖的上半部分。當(dāng)帶有硅陽極的鋰離子電池充電時,硅顆粒(淺藍色)在吸收鋰離子時物理性地增長。在這些含鋰的硅顆粒(深藍色)周圍還形成了一層SEI,即固體電解質(zhì)相(灰色),只是在電池放電時斷開。
這項研究為鋰電池陽極的硅退化的原因提供了新的見解。在充電過程中,硅片被困在SEI中,當(dāng)SEI在放電過程中與它分離時,原來的顆粒就變成了多孔的。隨著這個過程的重復(fù),粒子的收縮越來越大,直到它最終散開。
鋰離子電池通過正極(也被稱為陰極)的鋰與陽極材料之間的電化學(xué)反應(yīng)來儲存能量。在充電過程中,當(dāng)鋰離子實際進入陽極晶格中的空間時,它們與該材料結(jié)合,并在此過程中吸收電子;放電時,電池會移除鋰,以便重復(fù)這一過程,但在合金型陽極的情況下,也會導(dǎo)致陽極材料增長并最終斷裂。
在這些過程中,有多個中間步驟;了解它們在致密硅和納米多孔硅之間的不同,可能會對后者為什么能更好地抵御降解提供一些提示。然而,對這些過程的密切調(diào)查一直受阻于在如此小的尺度上對相關(guān)硅結(jié)構(gòu)進行成像的挑戰(zhàn)。
使用透射電子顯微鏡和X射線散射技術(shù)的獨特組合來研究鋰離子電池陽極在充電和放電過程中的退化。我們使用金而不是硅,因為金在電子顯微鏡成像過程中產(chǎn)生比硅更好的對比度。這可以清楚地檢測到在充電和放電過程中在金電極上形成的固體電解質(zhì)相間表面涂層,稱為 SEI。金也比硅散射更多的X射線,這使得它更容易探測在這些過程中陽極結(jié)構(gòu)的變化。
上一篇: 鎳氫電池和鋰電池哪個耐用?